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Abstract

This progress report presents the results of an investigation focused on parameter identification for the

NASA F/A-18 HARV. This aircraft was used in the high alpha research program at the NASA Dryden Flight

Research Center. In this study the longitudinal and lateral-directional stability derivatives are estimated from flight

data using the Maximum Likelihood method coupled with a Newton-Raphson minimization technique. The objective

is to estimate an aerodynamic model describing the aircraft dynamics over a range of angle of attack from 5" to

60 ° . The mathematical model is built using the traditional static and dynamic derivative buildup. Flight data used

in this analysis were from a variety of maneuvers. The longitudinal maneuvers included large amplitude multiple

doublets, optimal inputs, frequency sweeps and pilot pitch stick inputs. The lateral-directional maneuvers consisted

of large amplitude multiple doublets, optimal inputs and pilot stick and rudder inputs. The parameter estimation

code pest, developed at NASA Dryden, was used in this investigation. Results of the estimation process from

¢t=5* to or=60* are presented and discussed.
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Symbols

= normal acceleration, g

= longitudinal acceleration, g
= lateral acceleration, g

= wing span, ft

= mean aerodynamic chord, ft
= aerodynamic coefficient where i=(N,m,A), rad t or deg 1

= expected value
= gravity acceleration, ft/sec 2

= moment of inertia, slug-ft 2

= aircraft mass, slugs

= roll rate, deg/sec

= pitch rate, deg/sec

= dynamic pressure, lbs/ft 2

= conversion from radians to degrees (57.3)

= yaw rate, deg/sec
= wing planform area, ft2

= velocity, ft/sec
= wind tunnel

= sensor location, ft

= computed aircraft response vector

= measured aircraft response vector

= angle-of-attack, deg
= sideslip angle, deg

= control surface deflection, deg

= pitch attitude, deg

= parameter vector to be estimated
= summation

= roll attitude, deg

= gradient

= axial force

= aileron

= basic airframe

= drag force
= differential horizontal tail

= elevator

= lift force

= rolling moment

= leading edge flap

= pitching moment
= normal force

= yawing moment

= pitch vane
= rudder

= symmetric aileron

= true parameter value

= trailing edge flap
= lateral sideforce

= yaw vane

Greek

Subscripts
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Introduction

TheNASAHighAlphaTechnologyProgram(HATP)wasinitiatedwiththegoalof obtainingabetter

understandingof aircraftaerodynamics,controlsurfaceeffectivenessandairflowphenomenaathighalphaflight

conditions.Successfulachievementof thesegoalsareenvisionedto allowexpansionof flightenvelopes,

maneuverabilityenhancementandflightsafetyforfutureaircraft.TheNASAF/A-18HighAlpha Research Vehicle

(HARV) project is one of the flight test aircraft involved in this program.

The research work presented in this document is related to parameter identification (PID) for the HARV.

The goal is to determine an aerodynamic model which accurately describes the dynamics of the HARV over a wide

range of angle of attack conditions. This process allows the validation of wind tunnel data and results obtained from

other PID methods. In addition, the development of a more accurate model is of great importance for updating

flight simulators and onboard flight computers by enabling aircraft designers to better emulate the true system

dynamics. Results from PID analysis may also be used as a tool for monitoring aircraft stability as well as control

surface effectiveness while investigating the expansion of the flight envelope into the high alpha regime.

This report is related to the longitudinal and lateral-directional PID results for the HARV over a range from

5* to 60* for the angle of attack. The derivatives are extracted from flight data using the Maximum Likelihood

(ML) method. The ML cost functional is maximized through the minimization of a quadratic cost function which

contains the differences between measured and computed system responses. This minimization is achieved using

the Newton-Raphson (NR) technique. The parameter estimation program (pEst), developed at NASA Dryden, is

implemented in this research.

Flight data analyzed includes a variety of longitudinal and lateral-directional maneuvers obtained from the

HARV flight testing activities. Particularly, the longttudmal maneuvers examined include single surface input

multiple doublets (SSI MD), optimal longitudinal (OLON), 3211 frequency sweeps, and pilot pitch stick steps

(PPSS). The lateral-directional flight data included single surface input multiple doublets (SSI MD), optimal lateral

(OLAT) and pilot yaw/roll rudder and stick steps (PYRS) obtained from HARV.
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Chapter1:MaximumLikelihoodMethodandNewtonRaphsonAlgorithm

The ML method coupled with a NR minimization technique has been one of the most successful PID

approaches for several years. The effectiveness of this approach is well documented and excellent results have been

achieved for a large variety of aircraft, as presented in Refs. [ 1,2,4,5,7,8,9]. It is known that the estimates obtained

using the ML method have three asymptotic properties: they are unbiased, approach a Gaussian distribution and have

the lowest possible variance s. By asymptotic it implies that the aforementioned estimate properties are true if irrFinite

data time is available. However, these estimate properties are best approximated if the data time is long enough

(ie. a couple of periods of the lowest system natural frequency) 6. In the case of an aircraft, "long enough" would

be defined as a few periods of the phugoid mode.

In general, the objective is to maximize the probability that the computed system responses, based upon

a set of estimated stability derivatives, are representative of the true system dynamics. This conditional probability,

denoted as P(z/_), is also known as the likelihood function. In this analysis it is assumed that all state and

measurement noise may be described as a Gaussian, white sequence with zero mean. This allows the likelihood

function to take on the following form:

P(Z/_) - 1 e-j(_)

2=x = /Iw_-11-_

(1.1)

where the Oaussian probability density function P(z/_) represents the ML cost functional to be maximized. Here

W1 represents the response error weighting matrix. The number of discrete time points in the maneuver and the

number of responses in the cost function are denoted by r_ and n_ respectively. J(_) represents the quadratic cost

function to be minimized in order to maximize the likelihood function. This cost function is defined as follows:

n_

I _ ([Z(_)_y(_k)]rW_[z(tk)_y(_k)])J(_) - 2 n t nz

(1.2)

J(_) as its second order Taylor Series expansion and setting VJ(_) equal to zero the NR tectmJqueBy expressing

generates an expression for updating the parameter vector at each iteration in the estimation process:

_I*i: _i - [(_72{J<_i))]-i _7_J(_i) (1.3)
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where the first gradient of J(_,) with respect to _ is given by:

n¢

-1

The Gauss-Newton approximation of the second gradient of J(_) with respect to _ is as follows:

(1.4)

n_

1

A block diagram of the overall estimation procedure is shown in Figure 1. As illustrated, a predetermined

set of control surface inputs are applied to the true aircraft system and the responses are recorded. The recorded

control surface inputs and resulting aircraft responses are then read into the pEst code _.

The aircraft mathematical model within pest contains the polar coordinate form (ot,13,V) of the 6 degree

of freedom (DOF) non-linear aircraft equations of motion with the state equations being integrated using a fourth

order Runge-Kutta numerical scheme. In addition, when computing estimated responses pEst also accounts for

sensor locations with respect to the aircraft center of gravity (CG) to ensure that the cost function is comparing the

same "local" responses recorded by the sensors. Most importantly, pest is well-suited for user interaction allowing

the analyst to determine which stability derivatives are to be estimated and which states or responses are to be

included in the quadratic cost function. The user may also subsutute measured flight data in place of those states

or responses that are not computed within pEst. In addiuon, the d|agonal weighting matrix (W_) is easily set by

the user to indicate which response errors are to be considered more important in the estimation procedure.

The recorded control inputs are then applied to the mathemaucal model of the aircraft within pEst and the

differences between the measured and estimated respomcs are determ,ned. The NR algorithm then determines the

updated parameter vector to be used for the next iteration Th,ts procedure continues until a desired convergence

criteria for the change in the quadratic cost function AJ(_) _mm one _teration to the next is met resulting in the final

ML estimates of the aircraft model parameters.

The code is also capable of computing the corresponding Cramer-Rao bound for each derivative. This

bound is a computed minimum standard deviation of the est|mates which can be used as a measure of their

goodness. With the assumption of asymptotically unbiased esumates the Cramer-Rao inequality may be written as:

6



Theassumptionof Oaussian,whitesystemandmeasurementnoiseallowstheFisherinformationmatrixM(_)to

beapproximatedastheHessianof thequadraticcostfunctionJ(_):

M(_e)

n_

(1.7)

This derivation is shown in Refs. [1,6]. In general, the most practical use of the Cramer-Rao bound is as a measure

of scatter in the final estimates for the given flight data 6.
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Chapter 2: Estimation of the Longitudinal Aerodynamic Parameters

2.1 Mathematical Modeling of the Longitudinal Airer'Mt Dynamics

Modeling of the aircraft longitudinal dynamics within pEst begins with the polar coordinate form (ct,13,V)

of the classical 6 IX)F, non-linear equations of motion as seen ill 4"9"11. The body axis longitudinal equations of

motion are shown below:

_SR
= q-tan_ (p cos_+r sin_) - mVcos_ CL+

gR (cos@cos_cos_+sinOsina) Tsin_ R
Vcos _ mVcos _ (2.1)

1
Iy¢- Iy_- Ixy_ = My+ [pz (Iz- Ix) + (r2-p 2) I×z+qr Ixy-pqIyz] -_

(2.2)

0 = qcos¢ - I sine (2.3)

_=- qScD+g(cos¢cosesin_cos_+sin¢cosOsin _ -
m

sinOcos_cos_) +Tcosacos_ (2.4)
m

where •

CL=C_cos (g) -CAsin (_) (2.5)

CD=CAcos (¢t) +Cm.qin (_) (2.6)

In addition, adjustments were built into pest to include the effects of angular rates and accelerations to the computed

data to account for accelerometers which are non-coincident with the aircraft CG. The additional estimated

parameters a_B_, and a_8,, , are necessary to account for accelerometer instrumentation biases as shown:

8



_SC - 1

1 (Zan_Zc9) (q2+p2) + anBin, (2 7)
gR 2

ax =--_-c,- z
mg -_ [ (z_--zcg) ¢ + (Y_.-Ycg) 2] +

1 (X__Xcg) (q2+r2) + axBla.
9R _

(2.8)

Similarly, the flow angle measurements for a recorded by the aircraft instrumentation are also affected by angular

velocities and upwash if the flow vane is not coincident with the aircraft CG. Consequently, the computed flow

angle (x is adjusted within pEst as follows:

a = k_[a+(x.-xc_)--qv+(y_-ycg)--PV] (2.9)

Sensor and CG locations above, behind and to the right of the reference point are considered positive 3. The

reference point is located approximately 5 ft in front of the aircraft nose.

The linear buildups used to model the total, non-dimensional aerodynamic force and moment coefficients

within pEst are given by:

C_= Cwo + CN a + C_6.6e + Cj%,.61 ef + C_,=.r6tef + CNa.6sa +

1 c
(2.1o)

(2.11)

CA=CA o*cA = +cx6.ae+C,,_,61ef +C_°6tef +Cx, 6sa+

*_' " qb"
(2.12)

9



Note that the static buildup for the moment coefficient does not include the derivatives describing pitching moment

effects due to the pitch vane. This moment derivative is found in the total pitching moment equation where:

1
M r = qScCmR-6 r (ERPM (I×_) ) _ + [Cm6r6pv] R

(2.13)

The term ERPM represents engine revolutions per minute while Ixc denotes engine moment of inertia. The factor

of 6 is simply a conversion from revolutions per minute to degrees per second. Note that a standard sign convention

characterizing conventional control surface motion was employed: positive control surface deflection denoted as

being trailing edge down. The overall pitch vane deflection was defined as positive for downward deflection of the

exhaust plume.

2.2 Estimation Procedures

Four classes of longitudinal PID maneuvers were available for analysis in this effort. The SSI MD

maneuvers consisted of independent longitudinal control surface doublets generated by OBES for the trailing-edge

flaps, symmetrically deflected ailerons and the stabilator. The OLON runs included a series of 7.5* stabilator nose-

up and nose-down pulses applied by OBES. The 3211 runs involved an OBES generated frequency sweep of the

stabilator with a 7.5* amplitude of deflection. Such a maneuver consisted of four stabilator steps that alternate in

sign with the first being three time units long, the second being two units in length and the last two pulses each

being one time unit in duration. Each of the aforementioned maneuvers were performed with OBES on and the

TVCS active. The PPSS runs, consisting of pilot pitch stick step inputs that alternate in sign, were divided into two

subclasses: pilot pitch stick steps with the TVCS active (PPSSTV) and without (PPSS). Representative plots of the

control surface inputs for the aforementioned maneuver types may be seen in Figure 2 recorded at an alpha of 20*

In each class of maneuver investigated, the longitudinal inputs were designed to minimize lateral-directional

dynamics. All maneuvers were initiated under trimmed, straight and level flight conditions with all flight data

sampled with a frequency of 40 Hz. The test maneuvers were performed with a fairly consistent CG location

varying over the range of 24.5% - 26.7% c .
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Concernsregardingthepossibleinstabilityandoverestimationinmagnitudeof estimatedderivativesdue

tohighcorrelationsin theflightdatainducedaneedformodelsimplification.Thepresenceof correlationsamong

staticand/ordynamicflightdataimpliesthata dependencyexistsamongthemoftenleadingto difficultiesin

extractingmodelparametersthatdescribetheirseparateeffectsontheoverallsystem.Suchcorrelationsoftenexist

amongcontrolsurfacedeflectionswhicharedependentlydeployedwithrespecttoothercontrolsurfaces,orother

staticflightdatain thecaseof flightcontrolsystemalphascheduling.Analysisof theHARVflightdataindicated

that,undernormaloperatingconditions,theleading-edgeandtrailing-edgeflapsaredeployedusingaschedule

impartinghighcorrelationsbetweeneachother, as well as angle of attack. The presence of this high correlation

can clearly be seen in the sample time history of Figure 3a. To avoid biases in the derivative estimates all leading-

edge flap derivatives (CNncf, Cma and CA_a) were held constant at their relative wind tunnel values during the

estimation procedure. Similarly, all trailing-edge flap derivatives (CN_,a, C_,f and CAlf) were held constant at

wind tunnel data for all maneuvers with the exception of those in which they were independently pulsed by OBES

as in the case of the SSI MD maneuvers.

A similar technique was employed while analyzing the PPSSTV flight data in which high correlations

betweer_ stabilator and pitch vane deflections, as can be seen in Figure 3b, were encountered due to a lack of

independent control surface inputs. As a result, in an attempt to achieve more accurate estimates of the pitch vane

coefficients, the stabilator derivatives (CNu, C_ and C,a_ were held constant at wind tunnel data dunng the

estimation procedure. All wind tunnel values were based upon angle of attack and Mach for the maneuvers.

All mass properties (x_g, Ycv zcv Ix, Iy, Iz, I_ and mini were taken to be unique values for each individual

maneuver investigated. These values were obtained from fh_t data with an average value of each property over

the appropriate maneuver time being used in the mathernatlc,d model found in pEst. Finally, all lateral states and

responses found in the aircraft equations of motion _,_re replaced with measured flight data throughout the

estimation process, as was the aircraft flight velocity V

This investigation produced a set of estimates for the following static and dynamic longitudinal derivatives

for the NASA F/A-18 HARV: CNo, CN_,, CN_, C_a,_. C,._. C,_,,., CNq, C_, C_, C_, C_cr, Cm_. C_,,

C_, CAo, CA_, CAU, CA_a, CAr_, CA_,, CAq. In addmon, the two parameters a_Bm and a_B_ were estimated



inordertomodelthemeasurementbiasesforthenormalandaxiallinearaccelerometersaboardtheHARV. A

completelistingof theestimatedaerodynamiccoefficients, as well as which derivatives were held constant at wind

tunnel values, for each class of maneuver may be seen in Table I.

In terms of the longitudinal cost function 0), the objective was to minimize the difference between the

measured and computed values of (x, q, 0, an and a_ as shown below:

j(_) -
2 n: n z

q(tk) -_( tk)

0 (tk) -8 (tk)
k=l

a# (tk) -a# (tk)

at(t_) =ax(tk)

T

I00 iBO 0

0 CO

0 0 D

0 0 0

_ (tk) -a (tk) ]]

q( tk) -_( tk) ]]

O (t,)-0 (t,)I]

an (t,)-_n (t,)H

at(:k)-_ (_k)])

(2.13)

where the terms ct, q, 0, a_ and ax are the responses measured from the aircraft. The corresponding responses

computed in pEst are denoted by 6t, c], (3, ,_ and _. The diagonal matrix within the cost function represents the

user defined weighting matrix (W,). A trial and error approach was used to determine the best set of weightings

for each class of maneuver investigated. A listing of the A, B, C, D and E elements of the weighting matrix, as

was used for each class of maneuver, is given in Table 2.

2.3 Results of the _er Estin_ion Process

The results of the investigation are in terms of comparisons of actual and calculated time histories as well

as estimates of the longitudinal derivatives and a comparison with the wind tunnel estimates. Although estimates

were obtained for the CN, Cm and CA derivative subcomponents this paper emphasizes the subcomponents of CN and

Cm only. This is due to the fact that the maneuvers under investigation did not adequately excite axial acceleration

(a0 or aircraft flight velocity enough to obtain confident estimates of the axial coefficients.

An analysis of the actual and calculated time histories reveals that, overall, the minimization technique has

resulted in an accurate representation of the measured HARV responses even at higher angles of attack. A typical

sample time history match may be seen in Figure 4 showing time history comparisons between measured and

computed _, q, 0 and an responses at 30* alpha for the SSI MD class maneuver. Of course, accurate fits between
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measuredandcomputedaircraftresponsesdoesnotaloneimplythatanaccurateaerodynamicmodelhasbeen

estimated.

ThefinalPIDresultsforthemainlongitudinalstaticanddynamicparametersareshowninFigures5-7

relatedtoanangleofattackrangeof5*-60*.Eachestimatein theplotsindicatethemaneuvertypespawningthat

estimateaswellasitsCramer-Raoboundgraphicallyrepresentedasaverticalbar. RecallthattheCramer-Rao

boundsareequivalentto anestimatedminimumstandarddeviationfor agivenestimatewhich,ideally,should

accuratelydescribethescatteroftheestimatesateachangleofattack6. Someconsiderationsareneededforabetter

understandingof resultsin termsof theCramer-Raobounds.In fact,recallthatthedeterminationof theCramer-

RaoboundsassumesunbiasedestimateswithsystemandmeasurementnoisebeingdescribedasaGaussian,white

sequence.Consideringacasewheretheseassumptionsaretrulyvalidthetimehistoryresidualswouldalsobe

white,randomsequencesresultinginasetof Cramer-Raoboundsaccuratelymodelingthescatterof theestimates.

However,suchidealtestconditionsareonlyguaranteedif flightdataobtainedthroughcomputersimulationisbeing

investigated.AsexpressedinRef.[6],analysisofrealflightdatamayresultinbiasedestimatesoftencausedby

modelinginadequaciesor poorsystemexcitation.Furthermore,coloredsystemor measurementnoisewill also

affectthecomputedresidua/s.As a resu/t, in the case of residua/s correlated in this matu_r, optimistically

underestimated Cramer-Rao bounds are often calculated causing an inadequate model for the scatter of the estimates.

A variety of techniques to "correct" the Cramer-Rao bounds are discussed in detail in Ref. [6]. One such

technique involves multiplying the bounds by a factor, often 5-10, to compensate for the effects of the colored

residuals. A more precise method in Ref. [6] is based on the determination of a unique correction multiplier for

each Cramer-Rao bound through examination of the power spectral density for the response residuals generated by

the estimates. Note that the Cramer-Rao bounds presented herein are not adjusted.

In order to compare the coefficient estimates with the corresponding values obtained from wind tunnel tests

an important distinction between the wind tunnel model and the estimated HARV parameters had to be made. The

tunnel database models a "basic airframe" normal force coefficient (CN_b,) which represents the linear combination

of the normal force aerodynamic bias (CNo) and the effect of the lift curve slope. Similarly, a "basic airframe"

moment coefficient (Cm__ is presented which involves a linear combination of pitching moment aerodynamic bias

13



(C_,,)withtheeffectsof thepitchingmomentcoefficientduetoalpha.

windtunnelmodelingareshownbelow:

Thesecoefficientrepresentationsusedinthe

All othermodelparameterswerecompatibleforstraightforwardcomparisonwiththeestimatedHARV

derivativeswiththeexceptionof thethrustvectoringcontrolderivativesforwhich,of course,aerodynamicwind

tunneldatawerenotavailable.Sincetheestimatedcoefficientsof CNo,CN_,,Cm,,andC_ werenotdirectly

presentedin thetunneldatabasetheseestimateswerecombinedin theaforementionedmannerto presentthe

estimated"basicairframe"normalforceandmomentcoefficientsfortheHARV.

The estimates of the normal force coefficients are shown in the left side of Figures 5-7. In general, the

normal force coefficients were determined with consistency at each angle of attack with clear trends over the entire

alpha range. In addition, the Cramer-Rao bounds closely model the scatter achieved by some of the estimates,

especially at lower angles of attack. However, many of the bounds show evidence of underestimation. Overall,

it is clear that each flight maneuver tested is equally capable of concisely estimating most of the normal force

coefficients. However, there are two main exceptions to this conclusion. Examination of the estimates for CN,_v

in Figure 7 clearly indicates that the PPSSTV maneuvers, analyzed with all elevator derivatives held constant to

wind tunnel values, result in more consistent estimates over the entire alpha range. The estimates for the normal

force coefficient due to pitch rate (CNa) in Figure 7 also show that the PPSS and PPSSTV maneuvers yield more

consistent results with very little scatter over the range of alpha investigated. The SSI MD maneuver results, on

the other hand, indicate considerable scattering in this esumate. This is not surprising since the pilot inputs of the

PPSS and PPSSTV class maneuvers involve much more sustained excitation in pitch rate than those of the SSI MD

OBES inputs as shown in Figure 8.

The results for the estimates of the pitching moment coefficients do not show, in general, the same

consistency found in the estimates of the normal force coefficients although most estimates still indicate a detectable

trend. In fact, the results show a severe scatter of the estimates, particularly at high angles of attack. However,

14



closerexaminationindicatesthatthemajorityofthescatterinthesecoefficientsisdueto the estimates obtained using

the SSI MD maneuver data. In fact, it appears that the pitching moment estimates found through analysis of the

PPSS and PPSSTV data are much more consistent at each angle of attack. This is especially evident in the estimates

for C._ and C,_,_,,,. Again, this may be due to the highly sustained pitch rate excitation produced by these maneuver

types.

The PID estimates for CN_b, show good consistency with the wind tunnel data at low angles of attack. At

higher values of alpha the overall "basic airframe" normal force estimates are lower than the corresponding tunnel

data. The consistency and low scattering present in the CNo and Crq_,estimates may suggest that the estimates from

flight data are more realistic than the wind tunnel predicted values. The "basic airframe" pitching moment estimates

(Cm__ also indicate a close match with the tunnel data at lower alphas. However, again there is a substantial scatter

in the estimates at higher angles of attack. The consistent estimates from the PPSSTV maneuver indicate a higher

negative basic airframe pitching moment than was predicted by the wind tunnel tests at higher alphas. Comparisons

between PID estimates and wind tunnel data for the elevator normal force (CN_ and moment coefficients (Cm_)

are also shown in Figure 5. Overall, the trends of these estimates match the trend relative to wind tunnel data.

However, estimates for CNu at a=40* are consistently of lower magnitude than the wind tunnel data.

The estimated normal force and moment coefficients for symmetric ailerons (CN_,,, Cry,) and trailing edge

flaps (CNs,a, C,_a) are compared to wind tunnel data in Figure 6. There is only a limited agreement between the

PID estimates and the wind tunnel estimates.

Figure 7 shows instead the estimates of the normal force and pitching moment coefficients associated with

the pitch vanes of the thrust vectoring system (Crq_v, C,_,pv) as well as the dynamic coefficients pertaining to pitch

rate (CNq, C_). Among the longitudinal maneuvers, the PPSSTV maneuvers, performed with OBES off and the

TVCS on, were particularly effective in extracting estimates for CN_v and C.¢,w which reveal a clear and precise

trend with limited scatter as opposed to the other maneuvers analyzed. The trend is made more noticeable by the

least squares fits shown in the top of Figure 7 which were generated using PPSSTV estimates only. The results for

CNq and C_ may again be seen in the bottom of Figure 7. As previously mentioned, the estimates for CNq and Cm

resulting from analysis of the PPSS and PPSSTV maneuvers are much more consistent over the entire alpha range

15



testedwithverylittlescatter.Consequently,theleastsquaresfitsshown on these plots were generated using the

PPSS and PPSSTV estimates only. Overall, flight tests indicate a much higher normal force due to pitch rate than

was predicted during wind tunnel tests. Similarly, the least squares fit for the PPSS and PPSSTV data indicate a

trend for pitch damping (C m) that is slightly higher in magnitude than that predicted by the wind tunnel data.
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Chapter 3: Estimation of the Lateral-Directional Aerodynamic Par'anete_

3.1 _matica/Modeling of the Aircraft Dynsnics

Modeling of the aircraft lateral dynamics begins with the polar coordinate form (o_,[3,V) of the classical

6 DOF, non-linear equations of motion shown in Refs. [9,11]. The body axis lateral-directional equations of motion

are given by:

_=psina-rcos_+ q_-_S_R.Czwlnd + gR (cos_cos0sin_) +
my V

gR(-sin_(cos0cos¢sina-sin@cos_))+ TRcosasin_
V mv

(3.1)

1
I_-I_-Ixzf = Mx+ [ql (Iy-I z) + (qm -r 2) iyz+pqix._PZi_y ]

(3.2]

1
izf _ix_b_iyz¢ = Mz + [pq( Ix_iy ) + (p2_q2) ixy+priyz_qrIx.] -R

(3.3)

= p + tanO(Icos_ + q sin_) (3.4)

where •

Cvwind=Cfzos _ + CDsin_ (3.5)

CD=CACOS ((Z) +Cmsin (et) (3.6)

In addition, adjustments were built into pEst to include the effects of angular rates and accelerations on the computed

data to account for accelerometers which are non-coincident with the aircraft CG. The additional estimated

parameter ayB,., is necessary to account for the accelerometer insmm_entation bias as shown:
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ay = qSCzmg+ _i [_ (x,_xcg) f+ (zay-zcg)/_] - --!-IgR2(Ya,-Yc_) (P2+r2) + aysin. (3.7)

Similarly,the flow anglemeasurements for_ recordedby theaircraftinstrumentationarealsoaffectedby angular

velocitiesand sidewashiftheflow vane isnotcoincidentwith theaircraftCG. Consequently,the computed flow

angle_ isadjustedwithinpEst as follows:

_7"

= ks[_+ (zp-z_) _- (x_-xc_)_] (3.8)

Sensor and CG locations above, behind and to the right of the reference point are considered positive 3. The

reference point is located approximately 5 ft in front of the aircraft nose.

The linear buildup used to model the total, non-dimensional aerodynamic force and moment coefficients

within pEst are as follows:

Cr= Cro+ Crp_ + Cr, 6a + Cr6,_c6dht + Cra6r +

(3.9)

CI= CIo+ Clp_ +Cr66a+ Cl_6dht+C186r +

b + (3.10)

c_=C_o+Cnp_+C_ _a÷C_dhC +Cn,_Z ÷

b Cn.(_)r _3.11)

It should be noted that the static buildup for the rolling and yawing moment coefficients do not include the

derivatives modeling moment effects due to yaw vane deflections. These moment derivatives are found in the total

rolling and yawing moment equations:
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Mx=_SbC2R+ [C1_ 6yv] R (3.12)

1
Mz = _SbCnR + 6 q( ERPM (Ix.) )-_ + [C% 6yv] R

(3.13)

The second term on the right side of Eq. (3.13) is related to the gyroscopic effects of the engines. The term ERPM

denotes engine revolutions per minute and Ixe represents the moment of inertia of the engines. The factor of 6 is

simply a conversion factor from revolutions per minute to degrees per second. A standard sign convention for

control surface deflection was employed: positive rolling control surface deflections induce a positive roll rate,

positive rudder deflection is defined as trailing edge left. The overall yaw vane deflection was considered positive

for deflection of the exhaust plume to the right.

3.2 Estimation Procedures

Three types of lateral maneuvers were available for PID purposes. The SSI MD maneuvers consisted of

independent lateral control surface doublets generated by the On Board Excitation System (OBES) for the ailerons,

differential horizontal tail, rudder, and yaw vanes. The OLAT runs included a series of 5* aileron and 10" rudder

doublets applied by OBES. Recall that the OBES is instrumental in generating the independent control surface

deflections necessary for more accurate estimates by mtmmizing correlated control surface inputs. Each of the

previous maneuvers were performed by the OBES with the TVCS active. The PYRS maneuvers, which were not

executed using OBES, were separated into two subclasses prior yaw/roll steps without thrust vectoring (PYRS) and

with thrust vectoring (PYRSTV). The PYRS maneuvers consisted of a series of 1.5" rudder steps followed by a

series of 2.5" lateral stick steps both alternating in sign The PYRSTV inputs consisted of 1.5" rudder steps

followed by 1.5" lateral stick steps of alternating sign Representative plots of the control surface inputs for the

maneuver types described above may be seen in Figure 9 recorded at an alpha of 20*. For each maneuver class,

the lateral inputs were designed to minimize longitudinal dynamic responses. All maneuvers were initiated under

trimmed, straight and level flight conditions with all flight data sampled with a frequency of 40 Hz.

Concerns regarding a possible dynamic instability and overestimation in magnitude of estimated derivatives
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due to correlations in the flight data induced a need for a model simplification. The presence of correlation among

static and/or dynamic flight data implies that a dependency exists among them often leading to difficulties in

extracting model parameters that describe their separate effects on the overall system. These correlations often exist

among control surface deflections which are dependently deployed with respect to one another. An analysis of the

HARV lateral flight data for the PYRS maneuver clearly indicates a high correlation between aileron and differential

horizontal tail inputs when the standard flight control system is active. There is also a dependency between roll and

yaw control inputs applied by the aileron-rudder interconnect (ARI) of the standard F/A-18 flight control system.

These highly correlated inputs are clearly indicated in Figure 10. As a result, all differential horizontal tail

derivatives (Cv_t, Ct_thLand C,_,_ were held constant at wind tunnel values during the analysis of the PYRS data

so that more accurate aileron coefficients could be obtained. The operation of the ARI during these pilot yaw/roll

step maneuvers threatened to introduce difficulties in extracting the cross-coupling control derivatives Cyu, Cnu

and C_,. Analysis of the PYRS maneuvers at 20" angle of attack achieved best results when these cross-coupling

control derivatives were held constant at the estimates from wind tunnel analysis. However, PYRS data analysis at

30* angle of attack and higher required that only the cross-coupling control derivative Cn_, be held constant at

appropriate wind tunnel values.

Similarly, examination of the PYRSTV flight data also indicates a high correlation between aileron and

differential horizontal tail inputs as well as a dependency between roll and yaw control inputs applied by the ARI

of the standard F/A-18 flight control system. In addition, when the TVCS is active there is an additional correlation

between rudder and yaw vane inputs. A sample time history showing these correlations may be seen in Figure l 1.

Best results were obtained during the analysis of the PYRSTV flight data by holding all differential horizontal tail

derivatives (Cvm_t, Clsdlat and CnSdht) as well as all rudder coefficients (Cv_,, C_, and Cn_) constant at appropriate

wind tunnel values in order to obtain better estimates for the aileron and yaw vane derivatives. All wind tunnel

values were based upon angle of attack and Mach for the maneuvers.

All mass properties (x_g, Ycv z_v I,, Iy, Iz, I_ and mass) were taken to be unique values for each individual

maneuver. These values were obtained from flight data with an average value over the appropriate maneuver time

being used in the mathematical model found in pest. Finally, all longitudinal states and responses found in the
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aircraftequationsof motion,includingtheaircraftflightvelocityV, werereplacedwithmeasuredflightdata

throughouttheestimationprocess.

Thefollowingstaticanddynamiclateral-directionalderivativeswereestimatedfor theNASAF/A-18

HARV: Cvo,Cy[].,Cyfa,Cysdhl, Cyst., Cys,lv, Cyp, Cyr, Clo, Ell3, Cl_, Clfidht, Cl_-, Cisyv, Cip, Elf, Cno, Cnl3,

Cnr_, Cn_t_, C_,, C_v, C,p, C=. The additional parameter avB_ was estimated in order to model the

measurement bias for the lateral accelerometer aboard the HARV. A complete listing of which aerodynamic

coefficients were estimated, as well as which derivatives were held constant at wind tunnel values, for each class

of maneuver may be seen in Table 3.

In terms of the lateral-directional cost function (J), the objective was to minimize the difference between

the measured and computed values of 13, p, r, _ and ay as shown below.

n_

J(_) - 2 n_ n z

P(:k) -#( c_)

r (tk)-9 (ck)

(tk)-i_(ok)

ay(ok)-ay (tk)

T

ioo iBOO

0 CO

0 0 D

0 0 0

II

ay (_k) -_y (tk) ])

(3.14)

Here the terms 13, p, r, _ and ay are the responses measured from the aircraft while the corresponding responses

computed in pest are denoted by _, _, L _ and _. The diagonal mamx within the cost function represents the user

defined weighting matrix (W_). A trial and error approach was used to determine the best set of weightings for each

class of maneuver investigated. A listing of the A, B, C. D anti E elements of the weighting matrix, as was used

for each class of maneuver, may be seen in Table 4

3.3 Results of the Parameter Estimation Process

The results for the lateral-directional stability denvauves of the NASA F/A-18 HARV are presented in

terms of time history comparisons between measured and computed mrcraft responses as well as estimates for the

aerodynamic coefficients which are shown in comparison with wind tunnel data. Overall, estimates were obtained

for the aerodynamic subcomponents of the total roll, yaw arrl side force coefficients (C,, C, and Cy).
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Comparison between computed aircraft responses, generated using the estimated aerodynamic model, and

measured time histories indicate that an accurate representation of the HARV lateral-directional flight data responses

have been obtained even at higher alphas. Figure 12 offers a representative sample of the most important time

history fits of 13, p, r and _ at an alpha of 30* for the SSI MD class maneuver.

Estimation results for the main lateral-directional stability derivatives are presented in Figures 13-16 over

a flight regime of 5*- 60* angle of attack. Each estimate is shown with its corresponding Cramer-Rao bound

represented graphically as a vertical bar. Recall that the Cramer-Rao bound is a computed lower bound of the

standard deviation of each estimate which, under ideal estimation conditions, should accurately model the scatter

of the estimates at each angle of attack 6. Some considerations are needed for a better understanding of results in

terms of the Cramer-Rao bounds. In fact, recall that the determination of the Cramer-Rao bounds assumes unbiased

estimates with system and measurement noise being described as a Gaussian, white sequence. Considering a case

where these assumptions are truly valid the time history residuals would also be white, random sequences resulting

in a set of Cramer-Rao bounds accurately modeling the scatter of the estimates. However, such ideal test conditions

are only guaranteed if flight data is obtained through computer simulation. As expressed in Ref. [6], analysis of

real flight data may result in biased estimates often caused by modeling inadequacies or poor system excitation

Furthermore, colored system or measurement noise will also affect the computed residuals. As a result, in the case

of residuals correlated in this manner, optimistically underestimated Cramer-Rao bounds are often calculated causing

an inadequate model for the scatter of the estimates.

A variety of techniques to "correct" the Cramer-Rao bounds are discussed in Ref. [6]. One such techmque

involves multiplying the bounds by a factor, often 5-10, to compensate for the effects of the colored residuals. A

more precise method discussed in Ref. [6] entails determining a unique correction multiplier for each bound through

examination of the power spectral density for the response residuals generated by the estimates. Note that the

Cramer-Rao bounds presented herein are not adjusted.

Overall, estimates of the static derivatives show good consistency with well defined trends. In addition,

some of the Cramer-Rao bounds are successful in modeling the estimate scatter at the lower angles of attack

However, the majority of the bounds are clearly underestimated.
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An interesting trend was determined, as seen in Figure 13, for the dihedral effect (Ct_) in which the

estimates start at a low magnitude at an angle of attack of approximately 5"-10 ° and clearly increase to a maximum

magnitude at about 20* alpha. The magnitude of the dihedral effect decreases steadily thereafter. The results for

the aircraft yawing coefficient due to sideslip (Cn_) indicate that the HARV is directionally stable in yaw with Cno

positive up to approximately 30" angle of attack. However, estimates indicate that the aircraft becomes unstable

in yaw at alpha > 30", as is indicated with C,a being negative.

Figures 13-14 indicate an expected degradation in the rolling effectiveness of the ailerons (C_ and

differential stabilizer (Claret) as the angle of attack increases. This may be due to slow speeds and flow separation

which occur under high alpha flight conditions. Similarly, as seen in Figure 14, the yaw control of the rudder

(C_) was found to become less efficient at higher angles of attack. This could be caused, most likely, by the

rudder being in the wake of a highly turbulent, separated airflow from the wing under such flight conditions.

Although the estimates for the cross-coupling control derivatives (C_,, C_s,tbt and C1_) do not show the same

consistency as the primary control derivatives (Cl_, C_ and Co_,) a clear trend is still indicated. Finally, as it

can be seen in Figure 16, the yaw control effectiveness of the thrust vectoring vanes (C_v) aboard the HARV

remains almost constant over the entire flight regime with only a slight variation in magnitude.

The main lateral-directional side force coefficient estimates with the most defined trends may also be seen

in Figure 16. Again, the majority of the scatter is obtained at higher alphas with the estimates for the SSI MD

maneuvers. As expected, the side force effectiveness of the yaw vanes (Cv_v) remains nearly constant over the

entire flight regime investigated. The results for the side force effectiveness of the rudder (C¥_) indicate a loss

of rudder effectiveness as alpha increases. In addition, the scatter in the estimates for C¥_, at higher alphas indicate

a possible rudder control reversal under these flight conditions. However, such a control reversal is clearly not

present in the rudder yaw control results for the Cn_ estimates previously examined in Figure 14.

Among the dynamic coefficients estimated, the most consistent results were obtained for C_pand C_ as can

be seen in Figure 15. Overall, these coefficients indicate a damping effect against roll and yaw respectively. The

majority of the scattered dynamic derivative estimates are represented by results obtained using the OLAT inputs.

This may be due to a lack of proper excitation in roll and yaw resulting from the OLAT maneuvers in the estimation
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of these coefficients. In addition, some scatter of the SSI MD estimates is present at higher alphas.

A comparison between the main lateral-directional aerodynamic estimates from flight data with the

corresponding values in the NASA F/A-18 HARV wind tunnel database was also conducted. These final

comparisons may also be seen in Figures 13-16. Each plot contains a least squares curve fit which has been

generated through the estimates for comparison with the appropriate wind tunnel values when available. Note that

the F/A-18 wind tunnel database does not include values that are directly comparable to Cta, Cna and C¥_. In fact,

the wind tunnel data linearly combines the effects of each sideslip coefficient with the appropriate roll, yaw or

sideforce aerodynamic bias coefficient into one overall tenn. In addition, no compatible wind tunnel data was

available for direct comparison with the yaw vane coefficient estimates.

Figure 13 shows a comparison between the estimates, and corresponding tunnel data, for the rolling and

yawing coefficients due to aileron deflection (Cl_, and C,_). The estimates for C_. are in close accordance with

the listed tunnel data whereas the results for C.u are consistently lower in magnitude than the tunnel data. This

trend indicates less adverse yaw than expected due to aileron deflection at higher angles of attack.

Comparisons for the rudder roll and yaw estimates are presented in Figure 14. The estimates for C._r

match the tunnel data with good accuracy. However, estimates for adverse roll due to rudder deflection (C_r) are

close to wind tunnel estimates at the low and high ends of the flight regime between 10"- 60* alpha. In the region

of 30*- 40* alpha the estimates for C_ are consistently higher than those available in the wind tunnel database.

Estimates for Clm,, as seen in Figure 14, are consistently higher than those of the wind tunnel data.

Similarly, resulting estimates for C,_t_ show that, as angle of attack increases, the flight data indicate a higher

magnitude of adverse yaw due to differentially deflected stabdtzers than was previously modeled in the wind tunnel

database.

The least squares fit of the dynamic coefficient esumates of C_pand C,_ are shown in Figure 15. Both fits

show good agreement with the wind tunnel data. Similar results were obtained for the least squares fits of the

dynamic coefficient estimates of C_ and C,p.

Comparisons of the estimates for Cv_. with wind tunnel data may be seen in Figure 16. Again, the least

squares fit through the estimates agrees with the wind tunnel values, especially at low angles of attack. However,
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closer examination shows that for 0240* a major divergence from the wind tunnel data is encountered in which

the flight data indicates a possible rudder control reversal. Again, this control reversal was not indicated by the

Cn_, estimates.
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Chapter 4: Conclusiom

This paper has presented the longitudinal and later_-directional stability and control derivatives

obtained for the NASA F/A-18 HARV from flight data using the Maximum Likelihood estimation technique

with a Newton-Raphson minimization scheme over a flight regime of 5*- 60* angle of attack. The

mathematical model used in this investigation included classical static and dynamic derivatives estimated through

the analysis of a variety of PID maneuvers.

Resulting time history comparisons, along with the examination of the derivative estimates, have shown

that the final estimates are adequate representations of the dynamic system. The estimates of the normal force

coefficients, in general, indicated clear trends, exhibited very good consistency along with a limited level of

scatter, and a reasonable size for the Cramer-Rao bounds. The estimates of the pitching moment coefficients

were found to be best extracted from flight data pertaining to the PPSS and PPSSTV maneuvers with their

inherent ability to sustain excitation in pitch rate. Consequently, these maneuvers also produced the most

consistent results for the dynamic coefficients CNq and C_ in comparison with estimates obtained from other

maneuvers. The normal force and moment coefficients due to pitch vane deflection were found to be best

identified using the PPSSTV class maneuvers. Overall. very good agreement of the estimates with the tunnel

data was obtained at lower angles of attack with some devlauom apparent at higher alphas. The majority of the

rolling and yawing moment coefficients, indicated good cons|stoney with well defined trends and limited scatter

present mostly at higher alphas. However, although dL,._-rr, ble trends are still evident, less consistency in the

estimates was achieved for the cross-coupling control dcnv_tl,.e5 C,.,.. C,_u_l and Ct_ than the primary control

derivatives Cl+.,Ct_tbt and C._.
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Table 1: Breakdown of aerodynamic coefficiems estimated for each class of maneuver analyzed.

(4" = Parameter was estimated, W/T = Coefficient held constant at wind tunnel value,
N/A = Surface was not active and thus no estimate was obtained)

PARAMETER SSI MD OLON

CNo ¢" ¢

CNu 4' 4'

Cr_scf !/' W/T

CN/51ef W/T W/T

¢
CN_v

4

Emile

¢

3211 PPSS

¢ ¢

¢ ¢

¢

W/T W/T

W/T W/T

4" N/A

CN_.. J N/A N/A

CNq ¢" ¢' ¢'

C_ ¢" ./ ¢'

¢ ,/ ¢'

CAct

C_ta t/ W/T

C_aa W/T W/T

C_z,p, 4' ¢'

C_o 4' N/A

C_ 4 4

CAo 4' ¢'

./ ¢'

4

¢

W/T

¢'

W/T

W/T

CAse

CAr_tef

CA/lcf

W/T

W/T

¢

N/A

N/A

¢.

PPSSTV

¢

¢

W/T

W/T

W/T

¢

N/A

¢ ¢

¢ ,z

¢ ¢'

W/T

W/T

./ ¢

e" ,z

¢ ¢"

4

W/T

W/T

W/T W/T

N/A J

N/A N/A

¢

¢

W/T

W/T W/T

CA_ J J ¢ N/A

CA_, _ N/A N/A N/A

¢ ¢ ¢ ¢

,/

¢

4

4
axBula

CAq

¢ ¢

¢.

¢

W/T

W/T

W/T

¢.

N/A

¢

,Z

¢
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Table 2: Listing of the elements for the diagonal weighting matrix W_ used for each class of maneuver.

MANEUVER A B

SSI MD 3 8

OLON 3 8

C D E

5 150 140"

5 150 140

3211 3 8 5 50 40

PPSS 5 8 4 150 250

PPSSTV 5 150 140

* For the SSI MD maneuver at an alpha of 60* E=250

3O



Table 3: Breakdown of aerodynamic coefficients estimated for each class of maneuver analyzed
(4" = Parameter was estimated, W/T = Coefficient held constant at wind tunnel value,

N/A = Surface was not active and thus no estimate was obtained)

PARAMETER

Cvo

C¥1_

C¥_

C¥_¢uat

Cv_

Cy_,,

Cvp

Cyr

Clo

Cto

SSI MD OLAT

4" ¢

4" 4"

4"

/

4"

4"

/

/

4"

4"

4"

Cte,aut 4'

Cl_ 4"

Cl6y v 4"

Ctp 4"

Ct_ 4"

Cno 4"

C_ 4"

C_ 4"

Crtr

PYRS

4"

4"

PYRSTV

4"

/

4" W/T* 4"

N/A W/T W/T

4" 4" W/T

N/A

4"

4"

4"

4"

4"

N/A

4"

N/A

4"

4

,¢

/

.¢

Cn_u_ 4" N A

C.p 4" /

4" /

/
aTButs

4"

N/A

4"

4"

4"

* Indicates parameter was estimated for all alpha higher t'han 20"

4"

4"

4" 4"

4" 4"

4" 4"

WIT W/T

W/T* W/T

N/A ¢'

4" 4"

4" 4"

4" 4"

/ /

W/T 4"

W/T W/T

4" W/T

N/A 4"

4" 4"

4" /

4" 4"
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Table 4: Listing of the elements for the diagonal weighting matrix Wt used for each class of maneuver.

MANEUVER A B C D E

SSI MD 12 3* 17 3* 200

OLAT 12 6 17 6 200

PYRS 12 3 17 3 200

PYRSTV 12 3" 17 3" 200

* For the SSI MD and PYRSTV maneuvers at an alpha of 60* B=6, D=6
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Listof Figure Captions

Figure 1 - Block diagram of the parameter identification process

Figure 2 - Sample time histories showing representative a) SSI MD OBES inputs, b) OLON elevator OBES

inputs, c) 3211 elevator OBES inputs, d) PPSS elevator pilot input and e) PPSSTV elevator pilot input

Figure 3 - Sample time history indicating clear correlations between a) angle of attack, leading-edge flap and

trailing-edge flap deflection and b) elevator and pitch vane deflection

Figure 4 - Measured (_) and computed (....... ) SSI MD time history comparison plots for ot = 30*

Figure 5 - PID results for CN_b,, C=__, CN_ and C=t,. with Cramer-Rao bounds for a=5*- 60* in comparison

with wind tunnel data points and estimate curve fit

Figure 6 - PID results for CN_, C_,_, CNa,f and C_e,_,fwith Cramer-Rao bounds for or=20*- 60* in

comparison with wind tunnel data points and estimate curve fit

Figure 7 - PID results for CN_,v, C_t_v, CNq and C_q with Cramer-Rao bounds for or=5*- 60* including an

estimate curve fit generated using PPSS and PPSSTV estimates exclusively

Figure 8 - Comparison in pitch rate response generated by a) SSI MD, b) PPSS and c) PPSSTV inputs for

o:=20"

Figure 9 - Sample time histories showing representative a) SSI MD OBES control inputs, (b) OLAT OBES

control inputs, (c) PYRS Pilot control inputs and (d) PYRSTV Pilot control inputs

Figure 10 - Sample time history showing clear correlations between aileron, differential horizontal tail and

rudder deflections for the PYRS maneuver

Figure 11 - Sample time history showing clear correlations between aileron, differential horizontal tail, rudder

and yaw vane deflections for the PYRSTV maneuver

Figure 12 - Measured.(-.__. ) and computed (....... ) SSI MD time history comparison plots for et=30*

Figure 13 - PID results for C_a, Cna, Cte_ and Cou with Cramer-Rao bounds for or=5*- 60* in comparison

with wind tunnel data and estimate curve fit

33



Figure14- PIDresultsforC1_,C._, C1_and C._ with Cramer-Rao bounds for a =5 °- 60 ° in

comparison with wind tunnel data and estimate curve fit

Figure 15 - PID results for C_p, C._, C_ and C.p with Cramer-Rao bounds for ct=5 °- 60 ° in comparison with

wind tunnel data and estimate curve fit

Figure 16 - PID results for CF_, Cy_, C._ and Cy_yvwith Cramer-Rao bounds for a=5 °- 60 ° in

comparison with wind tunnel data and estimate curve fit
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(a) General Correlation between alpha, dtef and dlef
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Measured and computed time histories for alpha =30
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(a) SSl MD pitch rate excitation
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Correlation between da, ddht, dr and dyv for the PYRSTV maneuver

2O

10

0

"o

-10

-2O

-30
0

i

5 10 1

Time (see)

o

_0

-2

-4
0 5 10

Time (sec)

15

3O

20

10
A

"o
v

o

-lO

-2o
, j , I ,

5 10 15
Time (sec)

2O

10

-10 vvvY 
lO 15

Time (sec) FII



Measured and computed time histories for alpha =30
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